학술논문

Increased Ca2+ signaling through CaV1.2 induces tendon hypertrophy with increased collagen fibrillogenesis and biomechanical properties.
Document Type
Article
Source
FASEB Journal. Jul2023, Vol. 37 Issue 7, p1-15. 15p.
Subject
Language
ISSN
0892-6638
Abstract
Tendons are tension‐bearing tissues transmitting force from muscle to bone for body movement. This mechanical loading is essential for tendon development, homeostasis, and healing after injury. While Ca2+ signaling has been studied extensively for its roles in mechanotransduction, regulating muscle, bone, and cartilage development and homeostasis, knowledge about Ca2+ signaling and the source of Ca2+ signals in tendon fibroblast biology are largely unknown. Here, we investigated the function of Ca2+ signaling through CaV1.2 voltage‐gated Ca2+ channel in tendon formation. Using a reporter mouse, we found that CaV1.2 is highly expressed in tendon during development and downregulated in adult homeostasis. To assess its function, we generated ScxCre;CaV1.2TS mice that express a gain‐of‐function mutant CaV1.2 in tendon. We found that mutant tendons were hypertrophic, with more tendon fibroblasts but decreased cell density. TEM analyses demonstrated increased collagen fibrillogenesis in the hypertrophic tendons. Biomechanical testing revealed that the hypertrophic tendons display higher peak load and stiffness, with no changes in peak stress and elastic modulus. Proteomic analysis showed no significant difference in the abundance of type I and III collagens, but mutant tendons had about two‐fold increase in other ECM proteins such as tenascin C, tenomodulin, periostin, type XIV and type VIII collagens, around 11‐fold increase in the growth factor myostatin, and significant elevation of matrix remodeling proteins including Mmp14, Mmp2, and cathepsin K. Taken together, these data highlight roles for increased Ca2+ signaling through CaV1.2 on regulating expression of myostatin growth factor and ECM proteins for tendon collagen fibrillogenesis during tendon formation. [ABSTRACT FROM AUTHOR]