학술논문

Biochemical, physicochemical and molecular characterization of a genuine 2-Cys-peroxiredoxin purified from cowpea [Vigna unguiculata (L.) Walpers] leaves
Document Type
Article
Source
BBA - General Subjects. Jul2012, Vol. 1820 Issue 7, p1128-1140. 13p.
Subject
*PEROXIREDOXINS
*COWPEA
*CELLULAR signal transduction
*AMMONIUM sulfate
*HYDROPEROXIDES
*ION exchange chromatography
Language
ISSN
0304-4165
Abstract
Abstract: Background: Peroxiredoxins have diverse functions in cellular defense-signaling pathways. 2-Cys-peroxiredoxins (2-Cys-Prx) reduce H2O2 and alkyl-hydroperoxide. This study describes the purification and characterization of a genuine 2-Cys-Prx from Vigna unguiculata (Vu-2-Cys-Prx). Methods: Vu-2-Cys-Prx was purified from leaves by ammonium sulfate fractionation, chitin affinity and ion exchange chromatography. Results: Vu-2-Cys-Prx reduces H2O2 using NADPH and DTT. Vu-2-Cys-Prx is a 44kDa (SDS-PAGE)/46kDa (exclusion chromatography) protein that appears as a 22kDa molecule under reducing conditions, indicating that it is a homodimer linked intermolecularly by disulfide bonds and has a pI range of 4.56–4.72; its NH2-terminal sequence was similar to 2-Cys-Prx from Phaseolus vulgaris (96%) and Populus tricocarpa (96%). Analysis by ESI-Q-TOF MS/MS showed a molecular mass/pI of 28.622kDa/5.18. Vu-2-Cys-Prx has 8% α-helix, 39% β-sheet, 22% of turns and 31% of unordered forms. Vu-2-Cys-Prx was heat stable, has optimal activity at pH 7.0, and prevented plasmid DNA degradation. Atomic force microscopy shows that Vu-2-Cys-Prx oligomerized in decamers which might be associated with its molecular chaperone activity that prevented denaturation of insulin and citrate synthase. Its cDNA analysis showed that the redox-active Cys52 residue and the amino acids Pro45, Thr49 and Arg128 are conserved as in other 2-Cys-Prx. General significance: The biochemical and molecular features of Vu-2-Cys-Prx are similar to other members of 2-Cys-Prx family. To date, only one publication reported on the purification of native 2-Cys-Prx from leaves and the subsequent analysis by N-terminal Edman sequencing, which is crucial for construction of stromal recombinant 2-Cys-Prx proteins. [Copyright &y& Elsevier]