학술논문

CBNA: A control theory based method for identifying coding and non-coding cancer drivers.
Document Type
Article
Source
PLoS Computational Biology. 12/2/2019, Vol. 15 Issue 12, p1-23. 23p. 3 Diagrams, 4 Charts, 8 Graphs.
Subject
*CONTROL theory (Engineering)
*CANCER genes
*NON-coding RNA
*BIOLOGICAL networks
*GENE regulatory networks
*CANCER
*NEURAL codes
Language
ISSN
1553-734X
Abstract
A key task in cancer genomics research is to identify cancer driver genes. As these genes initialise and progress cancer, understanding them is critical in designing effective cancer interventions. Although there are several methods developed to discover cancer drivers, most of them only identify coding drivers. However, non-coding RNAs can regulate driver mutations to develop cancer. Hence, novel methods are required to reveal both coding and non-coding cancer drivers. In this paper, we develop a novel framework named Controllability based Biological Network Analysis (CBNA) to uncover coding and non-coding cancer drivers (i.e. miRNA cancer drivers). CBNA integrates different genomic data types, including gene expression, gene network, mutation data, and contains a two-stage process: (1) Building a network for a condition (e.g. cancer condition) and (2) Identifying drivers. The application of CBNA to the BRCA dataset demonstrates that it is more effective than the existing methods in detecting coding cancer drivers. In addition, CBNA also predicts 17 miRNA drivers for breast cancer. Some of these predicted miRNA drivers have been validated by literature and the rest can be good candidates for wet-lab validation. We further use CBNA to detect subtype-specific cancer drivers and several predicted drivers have been confirmed to be related to breast cancer subtypes. Another application of CBNA is to discover epithelial-mesenchymal transition (EMT) drivers. Of the predicted EMT drivers, 7 coding and 6 miRNA drivers are in the known EMT gene lists. Author summary: Cancer is a disease of cells in human body and it causes a high rate of deaths worldwide. There has been evidence that coding and non-coding RNAs are key players in the initialisation and progression of cancer. These coding and non-coding RNAs are considered as cancer drivers. To design better diagnostic and therapeutic plans for cancer patients, we need to know the roles of cancer drivers in cancer development as well as their regulatory mechanisms in the human body. In this study, we propose a novel framework to identify coding and non-coding cancer drivers (i.e. miRNA cancer drivers). The proposed framework is applied to the breast cancer dataset for identifying drivers of breast cancer. Comparing our method with existing methods in predicting coding cancer drivers, our method shows a better performance. Several miRNA cancer drivers predicted by our method have already been validated by literature. The predicted cancer drivers by our method could be a potential source for further wet-lab experiments to discover the causes of cancer. In addition, the proposed method can be used to detect drivers of cancer subtypes and drivers of the epithelial-mesenchymal transition in cancer. [ABSTRACT FROM AUTHOR]