학술논문

Titration of GLI3 Repressor Activity by Sonic Hedgehog Signaling Is Critical for Maintaining Multiple Adult Neural Stem Cell and Astrocyte Functions.
Document Type
Article
Source
Journal of Neuroscience. 10/30/2013, Vol. 33 Issue 44, p17490-17505. 16p.
Subject
*GENETIC repressors
*CELLULAR signal transduction
*ASTROCYTES
*NEURAL stem cells
*DEVELOPMENTAL neurobiology
*VOLUMETRIC analysis
*HEDGEHOG signaling proteins
Language
ISSN
0270-6474
Abstract
Sonic hedgehog (SHH), a key regulator of embryonic neurogenesis, signals directly to neural stem cells (NSCs) in the subventricular zone (SVZ) and to astrocytes in the adult mouse forebrain. The specific mechanism by which the GLI2 and GLI3 transcriptional activators (GLI2A and GLI3A) and repressors (GLI2R and GLI3R) carry out SHH signaling has not been addressed. We found that the majority of slow-cycling NSCs express Gli2 and Gli3, whereas Gli1 is restricted ventrally and all three genes are downregulated when NSCs transition into proliferating progenitors. Surprisingly, whereas conditional ablation of Smo in postnatal glial fibrillary acidic protein-expressing cells results in cell-autonomous loss of NSCs and a progressive reduction in SVZ proliferation, without an increase in glial cell production, removal of Gli2 or Gli3 does not alter adult SVZ neurogenesis. Significantly, removing Gli3 in Smo conditional mutants largely rescues neurogenesis and, conversely, expression of a constitutive GLI3R in the absence of normal Gli2 and Gli3 abrogates neurogenesis. Thus unattenuated GLI3R is a primary inhibitor of adult SVZ NSC function. Ablation of Gli2 and Gli3 revealed a minor role for GLI2R and little requirement for GLIA function in stimulating SVZ neurogenesis. Moreover, we found that similar rules of GLI activity apply to SHH signaling in regulating SVZ-derived olfactory bulb interneurons and maintaining cortical astrocyte function. Namely, fewer superficial olfactory bulb interneurons are generated in the absence of Gli2 and Gli3, whereas astrocyte partial gliosis results from an increase in GLI3R. Thus precise titration of GLIR levels by SHH is critical to multiple functions of adult NSCs and astrocytes. [ABSTRACT FROM AUTHOR]