학술논문

Targeting the cis-dimerization of LINGO-1 with low MW compounds affects its downstream signalling.
Document Type
Article
Source
British Journal of Pharmacology. Feb2015, Vol. 172 Issue 3, p841-856. 16p.
Subject
*DIMERIZATION
*TARGETED drug delivery
*LEUCINE
*MOLECULAR weights
*IMMUNOGLOBULINS
*CELLULAR signal transduction
*MEMBRANE proteins
*DRUG efficacy
Language
ISSN
0007-1188
Abstract
Background and Purpose The transmembrane protein LINGO-1 is a negative regulator in the nervous system mainly affecting axonal regeneration, neuronal survival, oligodendrocyte differentiation and myelination. However, the molecular mechanisms regulating its functions are poorly understood. In the present study, we investigated the formation and the role of LINGO-1 cis-dimers in the regulation of its biological activity. Experimental Approach LINGO-1 homodimers were identified in both HEK293 and SH- SY5 Y cells using co-immunoprecipitation experiments and BRET saturation analysis. We performed a hypothesis-driven screen for identification of small-molecule protein-protein interaction modulators of LINGO-1 using a BRET-based assay, adapted for screening. The compound identified was further assessed for effects on LINGO-1 downstream signalling pathways using Western blotting analysis and Alpha Screen technology. Key Results LINGO-1 was present as homodimers in primary neuronal cultures. LINGO-1 interacted homotypically in cis-orientation and LINGO-1 cis-dimers were formed early during LINGO-1 biosynthesis. A BRET-based assay allowed us to identify phenoxybenzamine as the first conformational modulator of LINGO-1 dimers. In HEK-293 cells, phenoxybenzamine was a positive modulator of LINGO-1 function, increasing the LINGO-1-mediated inhibition of EGF receptor signalling and Erk phosphorylation. Conclusions and Implications Our data suggest that LINGO-1 forms constitutive cis-dimers at the plasma membrane and that low MW compounds affecting the conformational state of these dimers can regulate LINGO-1 downstream signalling pathways. We propose that targeting the LINGO-1 dimerization interface opens a new pharmacological approach to the modulation of its function and provides a new strategy for drug discovery. [ABSTRACT FROM AUTHOR]