학술논문

Complementary interstellar detections from the heliotail.
Document Type
Article
Source
Frontiers in Astronomy & Space Sciences. 2024, p1-15. 15p.
Subject
*SOLAR wind
*SOLAR magnetic fields
*INTERPLANETARY magnetic fields
*COSMIC magnetic fields
*ASYMPTOTIC giant branch stars
Language
ISSN
2296-987X
Abstract
The heliosphere is a protective shield around the solar system created by the Sun's interaction with the local interstellar medium (LISM) through the solar wind, transients, and interplanetary magnetic field. The shape of the heliosphere is directly linked with interactions with the surrounding LISM, in turn affecting the space environment within the heliosphere. Understanding the shape of the heliosphere, the LISM properties, and their interactions is critical for understanding the impacts within the solar system and for understanding other astrospheres. Understanding the shape of the heliosphere requires an understanding of the heliotail, as the shape is highly dependent upon the heliotail and its LISM interactions. The heliotail additionally presents an opportunity for more direct in situ measurement of interstellar particles from within the heliosphere, given the likelihood of magnetic reconnection and turbulent mixing between the LISM and the heliotail. Measurements in the heliotail should be made of pickup ions, energetic neutral atoms, low energy neutrals, and cosmic rays, as well as interstellar ions that may be injected into the heliosphere through processes such as magnetic reconnection, which can create a direct magnetic link from the LISM into the heliosphere. The Interstellar Probe mission is an ideal opportunity for measurement either along a trajectory passing through the heliotail, via the flank, or by use of a pair of spacecraft that explore the heliosphere both tailward and noseward to yield a more complete picture of the shape of the heliosphere and to help us better understand its interactions with the LISM. [ABSTRACT FROM AUTHOR]