학술논문

The Low-Energy Telescope (LET) and SEP Central Electronics for the STEREO Mission.
Document Type
Article
Source
Space Science Reviews. Apr2008, Vol. 136 Issue 1-4, p285-362. 78p. 4 Color Photographs, 7 Diagrams, 25 Charts, 31 Graphs.
Subject
*SOLAR energetic particles
*TELESCOPES
*PARTICLE acceleration
*CORONAL mass ejections
*SCIENTIFIC apparatus & instruments
Language
ISSN
0038-6308
Abstract
The Low-Energy Telescope (LET) is one of four sensors that make up the Solar Energetic Particle (SEP) instrument of the IMPACT investigation for NASA’s STEREO mission. The LET is designed to measure the elemental composition, energy spectra, angular distributions, and arrival times of H to Ni ions over the energy range from ∼3 to ∼30 MeV/nucleon. It will also identify the rare isotope 3He and trans-iron nuclei with 30≤ Z≤83. The SEP measurements from the two STEREO spacecraft will be combined with data from ACE and other 1-AU spacecraft to provide multipoint investigations of the energetic particles that result from interplanetary shocks driven by coronal mass ejections (CMEs) and from solar flare events. The multipoint in situ observations of SEPs and solar-wind plasma will complement STEREO images of CMEs in order to investigate their role in space weather. Each LET instrument includes a sensor system made up of an array of 14 solid-state detectors composed of 54 segments that are individually analyzed by custom Pulse Height Analysis System Integrated Circuits (PHASICs). The signals from four PHASIC chips in each LET are used by a Minimal Instruction Set Computer (MISC) to provide onboard particle identification of a dozen species in ∼12 energy intervals at event rates of ∼1,000 events/sec. An additional control unit, called SEP Central, gathers data from the four SEP sensors, controls the SEP bias supply, and manages the interfaces to the sensors and the SEP interface to the Instrument Data Processing Unit (IDPU). This article outlines the scientific objectives that LET will address, describes the design and operation of LET and the SEP Central electronics, and discusses the data products that will result. [ABSTRACT FROM AUTHOR]