학술논문

Factor analysis for El Niño signals in sea surface temperature and precipitation.
Document Type
Article
Source
Theoretical & Applied Climatology. 2009, Vol. 97 Issue 1-2, p195-203. 9p. 3 Charts, 1 Map.
Subject
*FACTOR analysis
*TEMPERATURE
*METEOROLOGICAL precipitation
*PRINCIPAL components analysis
*METEOROLOGY
*WEATHER
Language
ISSN
0177-798X
Abstract
Maximum likelihood factor analysis (MLFA) is applied to investigate the variables of monthly Tropical Pacific sea surface temperatures (SST) from Niño 1+2, Niño 3, Niño 3.4, and Niño 4 and precipitation over New South Wales and Queensland of eastern Australia, Kalimantan Island of Indonesia, and California and Oregon of the west coast of the United States. The monthly data used were from 1950 to 1999. The November-February SST with time leads of 0, 1, 2, and 3 months to precipitation are considered for both El Niño warm phases and non El Niño seasons. Interpretations of the factor loadings are made to diagnose relationships between the SST and precipitation variables. For El Niño signals, the rotated FA loadings can efficiently group the SST and precipitation variables with interpretable physical meanings. When the time lag is 0 or 1 month, the November–February El Niño SST explains much of the drought signals over eastern Australia and Kalimantan. However, when the time lag is 2 or 3 months, the same SST cannot adequately explain the precipitation during January–May over the two regions. Communality results of five factors for precipitation indicate nearly 100% explanation of variances for Queensland and California, but the percentages are reduced to only about 30% for Oregon and Kalimantan. Factor scores clearly identify the strongest El Niño relevant to precipitation variations. Principal component factor analysis (PCFA) is also investigated, and its results are compared with MLFA. The comparison indicates that MLFA can better group SST data relevant to precipitation. The residuals of MLFA are always smaller than the PCFA. Thus, MLFA may become a useful tool for improving potential predictability of precipitation from SST predictors. [ABSTRACT FROM AUTHOR]