학술논문

Vertical Atmospheric Structures Associated with Positive Biases in COSMIC-2 Refractivity Retrievals.
Document Type
Article
Source
Journal of Atmospheric & Oceanic Technology. May2022, Vol. 39 Issue 5, p707-718. 12p.
Subject
*ATMOSPHERIC models
*ATMOSPHERIC layers
*REVERSE osmosis
*TROPOSPHERE
*SIGNAL-to-noise ratio
Language
ISSN
0739-0572
Abstract
Representation of complex vertical structures observed in the troposphere can vary depending on data sources. The radio occultation (RO) technique offers great advantages for sensing the atmosphere down to its lowermost layers using high-resolution measurements collected by satellites on low-Earth orbit (LEO). The structures are generally smoother in vertical when reproduced from atmospheric models. We evaluate the quality of troposphere retrievals from the COSMIC-2 mission and demonstrate that systematic effects in fractional refractivity deviations with respect to European Centre for Medium-Range Weather Forecasts (ECMWF) background fields are spatially correlated with positive refractivity gradients characterized as subrefraction. The magnitude of refractivity biases observed mostly over the equatorial regions can exceed 1% within altitudes of 3–5 km. Respective zonal means reveal seasonal trends linked with the distribution of atmospheric inversion layers and signal-to-noise ratio values in RO data. The positive biases are vertically collocated with significant refractivity gradients in COSMIC-2 retrievals that are not reflected in the corresponding ECMWF profiles. The analysis of gradients based on COSMIC-2 data, further supported by radiosonde observations, suggests that most of subrefractions is identified in the middle troposphere at around 4 km. While the altitudes of maximum refractivity gradients from COSMIC-2 and ECMWF data are in fairly good agreement, the magnitude of ECMWF gradients is significantly smaller and rarely exceeds positive values. [ABSTRACT FROM AUTHOR]