학술논문

Rigidity and flexibility in the tetrasaccharide linker of proteoglycans from atomic-resolution molecular simulation.
Document Type
Article
Source
Journal of Computational Chemistry. 6/15/2017, Vol. 38 Issue 16, p1438-1446. 10p.
Subject
*SACCHARIDES
*PROTEOGLYCANS
*MOLECULAR dynamics
*CARBOHYDRATES
*CHONDROITIN sulfates
Language
ISSN
0192-8651
Abstract
Proteoglycans (PGs) are covalent conjugates between protein and carbohydrate (glycosaminoglycans). Certain classes of glycosaminoglycans such as chondroitin sulfate/dermatan sulfate and heparan sulfate utilize a specific tetrasaccharide linker for attachment to the protein component: GlcAβ1-3Galβ1-3Galβ1-4Xylβ1-O-Ser. Toward understanding the conformational preferences of this linker, the present work used all-atom explicit-solvent molecular dynamics (MD) simulations combined with Adaptive Biasing Force (ABF) sampling to determine high-resolution, high-precision conformational free energy maps Δ G( φ, ψ) for each glycosidic linkage between constituent disaccharides, including the variant where GlcA is substituted with IdoA. These linkages are characterized by single, predominant (> 97% occupancy), and broad (45° × 60° for Δ G( φ, ψ) < 1 kcal/mol) free-energy minima, while the Xyl-Ser linkage has two such minima similar in free-energy, and additional flexibility from the Ser sidechain dihedral. Conformational analysis of microsecond-scale standard MD on the complete tetrasaccharide-O-Ser conjugate is consistent with ABF data, suggesting ( φ, ψ) probabilities are independent of the linker context, and that the tetrasaccharide acts as a relatively rigid unit whereas significant conformational heterogeneity exists with respect to rotation about bonds connecting Xyl to Ser. © 2017 Wiley Periodicals, Inc. [ABSTRACT FROM AUTHOR]