학술논문

Artificial Intelligence for Clinical Diagnosis and Treatment of Prostate Cancer.
Document Type
Article
Source
Cancers. Nov2022, Vol. 14 Issue 22, p5595. 23p.
Subject
*PROSTATE tumors treatment
*BIOMARKERS
*BIOPSY
*ARTIFICIAL intelligence
*MAGNETIC resonance imaging
*PATIENT monitoring
*PROSTATE-specific antigen
*DECISION making in clinical medicine
*PROSTATE tumors
*ALGORITHMS
*TUMOR grading
Language
ISSN
2072-6694
Abstract
Simple Summary: The primary purpose of this review is to provide an in-depth analysis of existing Artificial Intelligence (AI) algorithms used in the field of prostate cancer (PC) for diagnosis and treatment. This review aims to show the research community that AI-enabled technologies have the potential for widespread growth and penetration of PC diagnostics and therapeutics to simplify and accelerate existing healthcare processes. As medical science and technology progress towards the era of "big data", a multi-dimensional dataset pertaining to medical diagnosis and treatment is becoming accessible for mathematical modelling. However, these datasets are frequently inconsistent, noisy, and often characterized by a significant degree of redundancy. Thus, extensive data processing is widely advised to clean the dataset before feeding it into the mathematical model. In this context, Artificial intelligence (AI) techniques, including machine learning (ML) and deep learning (DL) algorithms based on artificial neural networks (ANNs) and their types, are being used to produce a precise and cross-sectional illustration of clinical data. For prostate cancer patients, datasets derived from the prostate-specific antigen (PSA), MRI-guided biopsies, genetic biomarkers, and the Gleason grading are primarily used for diagnosis, risk stratification, and patient monitoring. However, recording diagnoses and further stratifying risks based on such diagnostic data frequently involves much subjectivity. Thus, implementing an AI algorithm on a PC's diagnostic data can reduce the subjectivity of the process and assist in decision making. In addition, AI is used to cut down the processing time and help with early detection, which provides a superior outcome in critical cases of prostate cancer. Furthermore, this also facilitates offering the service at a lower cost by reducing the amount of human labor. Herein, the prime objective of this review is to provide a deep analysis encompassing the existing AI algorithms that are being deployed in the field of prostate cancer (PC) for diagnosis and treatment. Based on the available literature, AI-powered technology has the potential for extensive growth and penetration in PC diagnosis and treatment to ease and expedite the existing medical process. [ABSTRACT FROM AUTHOR]