학술논문

Impact of Femtosecond Laser Treatment Accompanied with Anodization of Titanium Alloy on Fibroblast Cell Growth.
Document Type
Article
Source
Physica Status Solidi. A: Applications & Materials Science. Jul2020, Vol. 217 Issue 13, p1-9. 9p.
Subject
*ANODIC oxidation of metals
*TITANIUM alloys
*FEMTOSECOND lasers
*STANDARD hydrogen electrode
*CELL growth
*X-ray photoelectron spectroscopy
Language
ISSN
1862-6300
Abstract
Herein, Ti6Al4V alloy is surface modified by femtosecond laser ablation. The microstructure image obtained by secondary electron microscopy reveals a combination of micrometer spikes or cones superimposed by nanoripples (laser‐induced periodic surface structures). To make the surface hydrophilic, anodization is performed resulting in further smoothness of microstructure and a final thickness of 35 ± 4 nm is estimated for oxide produced after anodization at 10 V (scan rate = 0.1 V s−1) versus standard hydrogen electrode. The obtained electrochemically active surface area (ECSA) is approximately 8 times larger compared with flat mirror polished Ti6Al4V surface. Combined chemical analysis by Pourbaix diagram and X‐ray photoelectron spectroscopy (XPS) analyses reveal that titanium and aluminum are passivating into TiO2 and Al2O3, but the dissolution of aluminum in the form of solvated ion is inevitable. Finally, cell seeding experiments on anodized and laser‐treated titanium alloy samples show that the growth of murine fibroblast cells is significantly suppressed due to unique surface texture of the laser‐treated and anodized titanium alloy sample. [ABSTRACT FROM AUTHOR]