학술논문

Nuclear lipid droplets and nuclear damage in Caenorhabditis elegans.
Document Type
Article
Source
PLoS Genetics. 6/16/2021, Vol. 17 Issue 6, p1-60. 60p.
Subject
*CAENORHABDITIS elegans
*LIPIDS
*NUCLEAR membranes
*CELL nuclei
*FATTY liver
*GERM cells
*COATED vesicles
*MEMBRANE lipids
Language
ISSN
1553-7390
Abstract
Fat stored in the form of lipid droplets has long been considered a defining characteristic of cytoplasm. However, recent studies have shown that nuclear lipid droplets occur in multiple cells and tissues, including in human patients with fatty liver disease. The function(s) of stored fat in the nucleus has not been determined, and it is possible that nuclear fat is beneficial in some situations. Conversely, nuclear lipid droplets might instead be deleterious by disrupting nuclear organization or triggering aggregation of hydrophobic proteins. We show here that nuclear lipid droplets occur normally in C. elegans intestinal cells and germ cells, but appear to be associated with damage only in the intestine. Lipid droplets in intestinal nuclei can be associated with novel bundles of microfilaments (nuclear actin) and membrane tubules that might have roles in damage repair. To increase the normal, low frequency of nuclear lipid droplets in wild-type animals, we used a forward genetic screen to isolate mutants with abnormally large or abundant nuclear lipid droplets. Genetic analysis and cloning of three such mutants showed that the genes encode the lipid regulator SEIP-1/seipin, the inner nuclear membrane protein NEMP-1/Nemp1/TMEM194A, and a component of COPI vesicles called COPA-1/α-COP. We present several lines of evidence that the nuclear lipid droplet phenotype of copa-1 mutants results from a defect in retrieving mislocalized membrane proteins that normally reside in the endoplasmic reticulum. The seip-1 mutant causes most germ cells to have nuclear lipid droplets, the largest of which occupy more than a third of the nuclear volume. Nevertheless, the nuclear lipid droplets do not trigger apoptosis, and the germ cells differentiate into gametes that produce viable, healthy progeny. Thus, our results suggest that nuclear lipid droplets are detrimental to intestinal nuclei, but have no obvious deleterious effect on germ nuclei. Author summary: Several human disorders such as obesity are associated with abnormal fat storage. Cells normally store fat in cytoplasmic organelles called lipid droplets. However, recent studies have shown that fat can also form inside of the cell nucleus, and the effects of nuclear fat are not known. Here we use the cell biology and genetics of the model organism C. elegans to study the causes and consequences of nuclear fat. We show that intestinal cells can contain nuclear fat, particularly during high-low-high changes in cytoplasmic fat that involve de novo fat synthesis. Nuclear fat is associated with multiple changes in intestinal nuclei that appear to represent damage and repair. Germ nuclei that normally differentiate into oocytes can also contain nuclear fat. In germ cells, however, even high levels of nuclear fat appear to cause little or no damage. Our results suggest that intestinal nuclei and germ cell nuclei might have different responses to nuclear fat in part because they differ in chromosomal organization at the nuclear envelope. [ABSTRACT FROM AUTHOR]