학술논문

High crossreactivity of human T cell responses between Lassa virus lineages.
Document Type
Article
Source
PLoS Pathogens. 3/6/2020, Vol. 16 Issue 3, p1-19. 19p.
Subject
*HUMAN T cells
*ARENAVIRUS diseases
*T cells
*ANTIBODY formation
Language
ISSN
1553-7366
Abstract
Lassa virus infects hundreds of thousands of people each year across rural West Africa, resulting in a high number of cases of Lassa fever (LF), a febrile disease associated with high morbidity and significant mortality. The lack of approved treatments or interventions underscores the need for an effective vaccine. At least four viral lineages circulate in defined regions throughout West Africa with substantial interlineage nucleotide and amino acid diversity. An effective vaccine should be designed to elicit Lassa virus specific humoral and cell mediated immunity across all lineages. Most current vaccine candidates use only lineage IV antigens encoded by Lassa viruses circulating around Sierra Leone, Liberia, and Guinea but not Nigeria where lineages I-III are found. As previous infection is known to protect against disease from subsequent exposure, we sought to determine whether LF survivors from Nigeria and Sierra Leone harbor memory T cells that respond to lineage IV antigens. Our results indicate a high degree of cross-reactivity of CD8+ T cells from Nigerian LF survivors to lineage IV antigens. In addition, we identified regions within the Lassa virus glycoprotein complex and nucleoprotein that contributed to these responses while T cell epitopes were not widely conserved across our study group. These data are important for current efforts to design effective and efficient vaccine candidates that can elicit protective immunity across all Lassa virus lineages. Author summary: Lassa virus (LASV), the causative agent of the hemorrhagic illness Lassa fever (LF), is found throughout West Africa. Humans are usually infected after contact with infected rodent excreta or aerosolized virus. The mortality rate among hospitalized LF cases is high and no effective treatments or vaccines exist. A vaccine effective against the four main lineages of LASV is needed to protect susceptible individuals across West Africa. To understand how this protection could occur, we examined the immune responses of LF survivors from two different regions of West Africa. As previous infection with Lassa virus protects from disease after subsequent exposure, the immune response of LF survivors provides a model of protective immunity that could be induced after vaccination. We found that LASV strains from lineages different from those that infected the LF survivors efficiently activated memory CD8+ T cell responses. We identified regions within LASV proteins that elicit memory responses in the majority of individuals. From these data, we propose that an effective vaccine that protects against lineages across West Africa should be designed to elicit memory CD8+ T cell responses in addition to antibody responses. [ABSTRACT FROM AUTHOR]