학술논문

Enhancement of phrenic long-term facilitation following repetitive acute intermittent hypoxia is blocked by the glycolytic inhibitor 2-deoxyglucose.
Document Type
Article
Source
American Journal of Physiology: Regulatory, Integrative & Comparative Physiology. Jan2018, Vol. 314 Issue 1, pR135-R144. 10p. 1 Diagram, 1 Chart, 5 Graphs.
Subject
Language
ISSN
0363-6119
Abstract
Moderate acute intermittent hypoxia (mAIH) elicits a form of respiratory motor plasticity known as phrenic long-term facilitation (pLTF). Preconditioning with modest protocols of chronic intermittent hypoxia enhances pLTF, demonstrating pLTF metaplasticity. Since "low-dose" protocols of repetitive acute intermittent hypoxia (rAIH) show promise as a therapeutic modality to restore respiratory (and nonrespiratory) motor function in clinical disorders with compromised breathing, we tested 1) whether preconditioning with a mild rAIH protocol enhances pLTF and hypoglossal (XII) LTF and 2) whether the enhancement is regulated by glycolytic flux. In anesthetized, paralyzed, and ventilated adult male Lewis rats, mAIH (three 5-min episodes of 10% O2) elicited pLTF (pLTF at 60 min post-mAIH: 49 ± 5% baseline). rAIH preconditioning (ten 5-min episodes of 11% O2/day with 5-min normoxic intervals, 3 times per week, for 4 wk) significantly enhanced pLTF (100 ± 16% baseline). XII LTF was unaffected by rAIH. When glycolytic flux was inhibited by 2-deoxy-d-glucose (2-DG) administered via drinking water (~80 mg·kg-1·day-1), pLTF returned to normal levels (58 ± 8% baseline); 2-DG had no effect on pLTF in normoxia-pretreated rats (59 ± 7% baseline). In ventral cervical (C4/5) spinal homogenates, rAIH increased inducible nitric oxide synthase mRNA vs. normoxic controls, an effect blocked by 2-DG. However, there were no detectable effects of rAIH or 2-DG on several molecules associated with phrenic motor plasticity, including serotonin 2A, serotonin 7, brain-derived neurotrophic factor, tropomyosin receptor kinase B, or VEGF mRNA. We conclude that modest, but prolonged, rAIH elicits pLTF metaplasticity and that a drug known to inhibit glycolytic flux (2-DG) blocks pLTF enhancement. [ABSTRACT FROM AUTHOR]