학술논문

Impact of cooking and fermentation by lactic acid bacteria on phenolic profile of quinoa and buckwheat seeds.
Document Type
Article
Source
Food Research International. May2019, Vol. 119, p886-894. 9p.
Subject
*BUCKWHEAT
*LACTIC acid fermentation
*LACTIC acid bacteria
Language
ISSN
0963-9969
Abstract
Abstract In this work, quinoa and buckwheat cooked seeds were fermented by two autochthonous strains of lactic acid bacteria isolated from the corresponding seeds, namely Lactobacillus paracasei A1 2.6 and Pediococcus pentosaceus GS·B, with lactic acid chemically acidified seeds as control. The impact of cooking and fermentation on the comprehensive phenolic profile of quinoa and buckwheat seeds was evaluated through untargeted ultra-high-pressure liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF-MS). Samples were analyzed also for in vitro antioxidant capacity (as FRAP and ORAC assays) and total phenolic content (TPC). The in vitro spectrophotometric assays highlighted that the microbial fermentation was more efficient in increasing (p <.05) the TPC and in vitro antioxidant potential in quinoa cooked seeds. However, an increase (p <.05) in TPC and ORAC radical scavenging was observed in both pseudocereals after the different cooking processes (i.e., boiling or toasting). The untargeted phenolic profiling depicted the comprehensive phenolic composition in these matrices. Raw seeds of both pseudocereals possessed a similar phenolic content (4.4 g kg−1 equivalents; considering free and bound fractions). Besides, the metabolomics-based approach showed that all treatments (i.e., cooking and fermentation) induced the release of specific classes, namely phenolic acids and tyrosols. The PLS-DA multivariate approach identified in flavonoids the best markers allowing to discriminate the different treatments considered (i.e., cooking, chemical acidification and microbial fermentation). These findings support the use of cooking and microbial fermentation to ensure the health-promoting properties of non-wheat grains, such as buckwheat and quinoa. Graphical abstract Unlabelled Image Highlights • Quinoa and buckwheat cooked seeds were fermented with lactic acid bacteria. • Autochthonous Lactobacillus paracasei and Pediococcus pentosaceus were selected. • An increase of total phenolics and antioxidant potential was observed after cooking. • Lactobacillales fermentation increased phenolic acids and tyrosols. • Flavonoids were the best discriminants between different processing. [ABSTRACT FROM AUTHOR]