학술논문

Development of Allogeneic Stem Cell-Based Platform for Delivery and Potentiation of Oncolytic Virotherapy.
Document Type
Article
Source
Cancers. 12/15/2022, Vol. 14 Issue 24, p6136. 18p.
Subject
*DRUG delivery systems
*BIOLOGICAL models
*HOMOGRAFTS
*CELL culture
*ANIMAL experimentation
*GENE expression
*CELLS
*STEM cells
*DRUG development
*CELL lines
*CANCER vaccines
*ONCOLYTIC virotherapy
*MICE
*NUCLEIC acid amplification techniques
Language
ISSN
2072-6694
Abstract
Simple Summary: The therapeutic potential of the oncolytic virotherapy is severely restricted by multiple innate and adaptive immune barriers. Here, we describe how the Supernova (SNV) cell-based oncolytic platform can be utilized to generate off-the-shelf products for cancer treatments. CAL1 vaccinia virus was loaded into adipose-derived mesenchymal stem cells to generate SNV1. SNV1 shows more resistant to rapid inactivation by humoral immune system as compared to naked CAL1 virus leading to a significant and robust improvement of oncolytic virus therapeutic efficacy in multiple animal models. Particularly, SNV1 provided instantly active viral particles for immediate infection and simultaneous release of therapeutic proteins in the injected tumors, potentially improving virus-based cancer therapies in the clinic. We describe the repurposing and optimization of the TK-positive (thymidine kinase) vaccinia virus strain ACAM1000/ACAM2000™ as an oncolytic virus. This virus strain has been widely used as a smallpox vaccine and was also used safely in our recent clinical trial in patients with advanced solid tumors and Acute Myeloid Leukemia (AML). The vaccinia virus was amplified in CV1 cells and named CAL1. CAL1 induced remarkable oncolysis in various human and mouse cancer cells and preferentially amplified in cancer cells, supporting the use of this strain as an oncolytic virus. However, the therapeutic potential of CAL1, as demonstrated with other oncolytic viruses, is severely restricted by the patients' immune system. Thus, to develop a clinically relevant oncolytic virotherapy agent, we generated a new off-the-shelf therapeutic called Supernova1 (SNV1) by loading CAL1 virus into allogeneic adipose-derived mesenchymal stem cells (AD-MSC). Culturing the CAL1-infected stem cells allows the expression of virally encoded proteins and viral amplification prior to cryopreservation. We found that the CAL1 virus loaded into AD-MSC was resistant to humoral inactivation. Importantly, the virus-loaded stem cells (SNV1) released larger number of infectious viral particles and virally encoded proteins, leading to augmented therapeutic efficacy in vitro and in animal tumor models. [ABSTRACT FROM AUTHOR]