학술논문

Agricultural bio-waste recycling through efficient microbial consortia.
Document Type
Article
Source
Journal of Applied & Natural Science. 2023, Vol. 15 Issue 1, p349-355. 7p.
Subject
*AGRICULTURE
*RICE straw
*SUSTAINABILITY
*MICROBIAL inoculants
*AGRICULTURAL productivity
*WASTE recycling
Language
ISSN
0974-9411
Abstract
In India and other countries, rice straw, a byproduct of rice production, is burned in enormous amounts, which contributes to environmental pollution and climate change by releasing greenhouse gases viz., CO2, N2O, CH4, into the atmosphere. This study aimed to accelerate the degradation of this enormous amount of agricultural biomass via microbial inoculants. Four treatments--rice straw (RS), rice straw plus water (RSW), rice straw plus water plus Pusa decomposer (RSWF), and rice straw plus water plus Tamil Nadu Agricultural University (TNAU) biomineralizer (RSWB) were used in the current investigation. The study's findings demonstrated that rice straw treated with microorganisms decomposed more quickly than RS and RSW treatments. According to EDAX spectra of elemental composition, the carbon content of rice straw in the RS, RSW, RSWF, and RSWB treatments was 33.66%, 29.75%, 13.33%, and 20.65% w/w, respectively. The RSWF treatment of rice straw was found to have the highest nitrogen concentration (0.64% w/w), followed by RSWB (0.61% w/w), RSW (0.45%) w/w, and RS (0.43% w/w). Treatments RSWF and RSWB had lower C/N ratios 20.83, and 33.85, respectively, than that RSW (66.11) and RS (78.28). The RSWF and RSWB treatments' porous, distorted, and rough surface structures provided further evidence that both microbial consortia could decompose rice straw more quickly than the RSW and RS treatments. Therefore, the results of this study imply that rice straw could be added to the soil to improve soil fertility for sustainable crop production rather than being burned. [ABSTRACT FROM AUTHOR]