학술논문

The structural role of SARS-CoV-2 genetic background in the emergence and success of spike mutations: The case of the spike A222V mutation.
Document Type
Article
Source
PLoS Pathogens. 7/11/2022, Vol. 18 Issue 7, p1-28. 28p.
Subject
*SARS-CoV-2
*GENETIC mutation
*VACCINE effectiveness
*VIRAL mutation
*VIRAL genomes
*COVID-19
*AVIAN influenza
Language
ISSN
1553-7366
Abstract
The S:A222V point mutation, within the G clade, was characteristic of the 20E (EU1) SARS-CoV-2 variant identified in Spain in early summer 2020. This mutation has since reappeared in the Delta subvariant AY.4.2, raising questions about its specific effect on viral infection. We report combined serological, functional, structural and computational studies characterizing the impact of this mutation. Our results reveal that S:A222V promotes an increased RBD opening and slightly increases ACE2 binding as compared to the parent S:D614G clade. Finally, S:A222V does not reduce sera neutralization capacity, suggesting it does not affect vaccine effectiveness. Author summary: Since early 2020, the trajectory of the COVID-19 pandemic has mostly been shaped by the appearance of novel variants of the SARS-CoV-2 virus. Accordingly, much of the scientific effort has been directed toward the question of explaining, understanding, and predicting the evolutionary fate of individual mutations in the viral genome. In this article, we focus on A222V, a particular mutation in the Spike protein that emerged in Spain in mid-2020 and reappeared independently in the AY.4.2 subvariant of Delta one year later. As reemerging mutations often indicate an evolutionary advantage, we explored potential mechanisms linking A222V to biologically relevant outcomes. Using serological, functional, structural, and computational approaches, we identified key molecular-level differences conferred by A222V that potentially explain its repeated emergence in different genetic backgrounds. Our results point to subtle changes in the dynamic behavior of the receptor-binding domain in the binding-competent "up" conformation, ones that affect receptor binding itself, but can also act synergistically with other mutations by changing the accessibility of key residues involved in molecular recognition. [ABSTRACT FROM AUTHOR]