학술논문

CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia.
Document Type
Journal Article
Source
New England Journal of Medicine. 1/21/2021, Vol. 384 Issue 3, p252-260. 9p.
Subject
*SICKLE cell anemia
*CRISPRS
*GENOME editing
*FETAL hemoglobin
*HEMATOPOIETIC stem cells
*SICKLE cell anemia treatment
*PROTEIN metabolism
*PROTEINS
*RESEARCH
*CLINICAL trials
*RESEARCH methodology
*MEDICAL cooperation
*EVALUATION research
*GENE expression
*COMPARATIVE studies
*GENE therapy
*BETA-Thalassemia
Language
ISSN
0028-4793
Abstract
Transfusion-dependent β-thalassemia (TDT) and sickle cell disease (SCD) are severe monogenic diseases with severe and potentially life-threatening manifestations. BCL11A is a transcription factor that represses γ-globin expression and fetal hemoglobin in erythroid cells. We performed electroporation of CD34+ hematopoietic stem and progenitor cells obtained from healthy donors, with CRISPR-Cas9 targeting the BCL11A erythroid-specific enhancer. Approximately 80% of the alleles at this locus were modified, with no evidence of off-target editing. After undergoing myeloablation, two patients - one with TDT and the other with SCD - received autologous CD34+ cells edited with CRISPR-Cas9 targeting the same BCL11A enhancer. More than a year later, both patients had high levels of allelic editing in bone marrow and blood, increases in fetal hemoglobin that were distributed pancellularly, transfusion independence, and (in the patient with SCD) elimination of vaso-occlusive episodes. (Funded by CRISPR Therapeutics and Vertex Pharmaceuticals; ClinicalTrials.gov numbers, NCT03655678 for CLIMB THAL-111 and NCT03745287 for CLIMB SCD-121.). [ABSTRACT FROM AUTHOR]