학술논문

PCDHGB7 hypermethylation-based Cervical cancer Methylation (CerMe) detection for the triage of high-risk human papillomavirus-positive women: a prospective cohort study.
Document Type
Article
Source
BMC Medicine. 2/8/2024, Vol. 22 Issue 1, p1-14. 14p.
Subject
*CERVICAL cancer
*CERVICAL intraepithelial neoplasia
*HUMAN papillomavirus
*MEDICAL triage
*COHORT analysis
Language
ISSN
1741-7015
Abstract
Background: Implementation of high-risk human papillomavirus (hrHPV) screening has greatly reduced the incidence and mortality of cervical cancer. However, a triage strategy that is effective, noninvasive, and independent from the subjective interpretation of pathologists is urgently required to decrease unnecessary colposcopy referrals in hrHPV-positive women. Methods: A total of 3251 hrHPV-positive women aged 30–82 years (median = 41 years) from International Peace Maternity and Child Health Hospital were included in the training set (n = 2116) and the validation set (n = 1135) to establish Cervical cancer Methylation (CerMe) detection. The performance of CerMe as a triage for hrHPV-positive women was evaluated. Results: CerMe detection efficiently distinguished cervical intraepithelial neoplasia grade 2 or worse (CIN2 +) from cervical intraepithelial neoplasia grade 1 or normal (CIN1 −) women with excellent sensitivity of 82.4% (95% CI = 72.6 ~ 89.8%) and specificity of 91.1% (95% CI = 89.2 ~ 92.7%). Importantly, CerMe showed improved specificity (92.1% vs. 74.9%) in other 12 hrHPV type-positive women as well as superior sensitivity (80.8% vs. 61.5%) and specificity (88.9% vs. 75.3%) in HPV16/18 type-positive women compared with cytology testing. CerMe performed well in the triage of hrHPV-positive women with ASC-US (sensitivity = 74.4%, specificity = 87.5%) or LSIL cytology (sensitivity = 84.4%, specificity = 83.9%). Conclusions: PCDHGB7 hypermethylation-based CerMe detection can be used as a triage strategy for hrHPV-positive women to reduce unnecessary over-referrals. Trial registration: ChiCTR2100048972. Registered on 19 July 2021. [ABSTRACT FROM AUTHOR]