학술논문

Laser micro-patterning of biodegradable polymer blends for tissue engineering.
Document Type
Article
Source
Journal of Materials Science. Jan2015, Vol. 50 Issue 2, p923-936. 14p.
Subject
*BIODEGRADABLE plastics
*POLYMER blends
*TISSUE engineering
*SOLVENTS
*HYALURONIC acid
*LASER beams
Language
ISSN
0022-2461
Abstract
We propose a multistep all laser, maskless, and solvent free synthesis of micro-patterned substrates of biodegradable polymer blends, with applicability for guided cell adhesion and localized hyaluronic acid (HA) immobilization. The polymer blends comprised polyurethane (PU), poly(lactic-co-glycolic acid) (PLGA), and polylactide-polyethylene glycol-polylactide (PPP) in 1:1:1 blending ratios. Polymer patterning was performed by laser processing in two steps. First, the polymers were patterned with periodic micro-channels by direct femtosecond laser ablation, which provided flexibility in design and spatial accuracy for the patterns. As a second step, the micro-patterned polymers were coated with thin layers of polymer blends using matrix assisted pulsed laser evaporation (MAPLE). The resulted sandwich substrates were composed of a bottom, micro-patterned layer and thin, top layer which conserved the patterns from the underlying layer and preserved the polymers chemical composition. Depending on the bottom/top layers, the substrates were denominated PU/PU:PLGA:PPP and PU:PLGA:PPP/PU:PLGA:PPP, respectively. The laser generated micro-patterns were used for selective attachment of oral keratinocyte stem cells and for HA immobilization. The highest cellular density was found on the PU:PLGA:PPP/PU:PLGA:PPP substrate, where the spongy-like micro-channels provided multiple anchoring points for the cells. For both substrates, the micro-channels enabled localized immobilization of HA. The effectiveness of HA immobilization was tested against cell adhesion and protein adsorption. [ABSTRACT FROM AUTHOR]