학술논문

A DFT Study of Volatile Organic Compounds Detection on Pristine and Pt-Decorated SnS Monolayers.
Document Type
Article
Source
Sensors (14248220). Sep2023, Vol. 23 Issue 17, p7319. 16p.
Subject
*VOLATILE organic compounds
*DENSITY functional theory
*ELECTRONIC excitation
*CHARGE transfer
*DENSITY of states
Language
ISSN
1424-8220
Abstract
Real-time monitoring of volatile organic compounds (VOCs) is crucial for both industrial production and daily life. However, the non-reactive nature of VOCs and their low concentrations pose a significant challenge for developing sensors. In this study, we investigated the adsorption behaviors of typical VOCs (C2H4, C2H6, and C6H6), on pristine and Pt-decorated SnS monolayers using density functional theory (DFT) calculations. Pristine SnS monolayers have limited charge transfer and long adsorption distances to VOC molecules, resulting in VOC insensitivity. The introduction of Pt atoms promotes charge transfer, creates new energy levels, and increases the overlap of the density of states, thereby enhancing electron excitation and improving gas sensitivity. Pt-decorated SnS monolayers exhibited high sensitivities of 241,921.7%, 35.7%, and 74.3% towards C2H4, C2H6, and C6H6, respectively. These values are 142,306.9, 23.8, and 82.6 times higher than those of pristine SnS monolayers, respectively. Moreover, the moderate adsorption energies of adsorbing C2H6 and C6H6 molecules ensure that Pt-decorated SnS monolayers possess good reversibility with a short recovery time at 298 K. When heated to 498 K, C2H4 molecules desorbs from the surface of Pt-decorated SnS monolayer in 162.33 s. Our results indicate that Pt-decorated SnS monolayers could be superior candidates for sensing VOCs with high selectivity, sensitivity, and reversibility. [ABSTRACT FROM AUTHOR]