학술논문

An overview of AVIRIS-NG airborne hyperspectral science campaign over India.
Document Type
Article
Source
Current Science (00113891). 4/10/2019, Vol. 116 Issue 7, p1082-1088. 7p.
Subject
*AIRBORNE Visible/Infrared Imaging Spectrometer (AVIRIS)
*HYPERSPECTRAL imaging systems
*SPECTROSCOPIC imaging
*REFLECTANCE
Language
ISSN
0011-3891
Abstract
The first phase of an airborne science campaign has been carried out with the Airborne Visible/Infrared Imaging Spectrometer Next Generation (AVIRIS-NG) imaging spectrometer over 22,840 sq. km across 57 sites in India during 84 days from 16 December 2015 to 6 March 2016. This campaign was organized under the Indian Space Research Organisation (ISRO) and National Aeronautics and Space Administration (NASA) joint initiative for HYperSpectral Imaging (HYSI) programme. To support the campaign, synchronous field campaigns and ground measurements were also carried out over these sites spanning themes related to crop, soil, forest, geology, coastal, ocean, river water, snow, urban, etc. AVIRIS-NG measures the spectral range from 380 to 2510 nm at 5 nm sampling with a ground sampling distance ranging from 4 to 8 m and flight altitude of 4-8 km. On-board and ground-based calibration and processing were carried out to generate level 0 (L0) and level 1 (L1) products respectively. An atmospheric correction scheme has been developed to convert the measured radiances to surface reflectance (level 2). These spectroscopic signatures are intended to discriminate surface types and retrieve physical and compositional parameters for the study of terrestrial, aquatic and atmospheric properties. The results from this campaign will support a range of objectives, including demonstration of advanced applications for societal benefits, validation of models/techniques, development of state-of-the-art spectral libraries, testing and refinement of automated tools for users, and definition of requirements for future space-based missions that can provide this class of measurements routinely for a range of important applications. [ABSTRACT FROM AUTHOR]