학술논문

The Maresin 1–LGR6 axis decreases respiratory syncytial virus-induced lung inflammation.
Document Type
Article
Source
Proceedings of the National Academy of Sciences of the United States of America. 1/10/2023, Vol. 120 Issue 2, p1-10. 17p.
Subject
*PNEUMONIA
*G protein coupled receptors
*INNATE lymphoid cells
*RESPIRATORY syncytial virus infections
*RESPIRATORY syncytial virus
Language
ISSN
0027-8424
Abstract
The resolution of infection is an active process with specific molecular and cellular mechanisms that temper inflammation and enhance pathogen clearance. Here, the specialized pro-resolving mediator (SPM) Maresin 1 (MaR1) inhibited respiratory syncytial virus (RSV)-induced inflammation. inlerleukin-13 production from type 2 innate lymphoid cells (ILC) and CD4 T helper type 2 cells was decreased by exogenous MaR1. In addition, MaR1 increased amphiregulin production and decreased RSV viral transcripts to promote resolution. MaR1 also promoted interferon-β production in mouse lung tissues and also in pediatric lung slices. MaR1 significantly inhibited the RSV-triggered aberrant inflammatory phenotype in FoxP3-expressing Tregs. The receptor for MaR1, leucine-rich repeat-containing G protein-coupled receptor 6 (LGR6), was constitutively expressed on Tregs. Following RSV infection, mice lacking Lgr6 had exacerbated type 2 immune responses with an increased viral burden and blunted responses to MaR1. Together, these findings have uncovered a multi-pronged protective signaling axis for MaR1–Lgr6, improving Tregs’s suppressive function and upregulating host antiviral genes resulting in decreased viral burden and pathogen-mediated inflammation, ultimately promoting restoration of airway mucosal homeostasis. [ABSTRACT FROM AUTHOR]