학술논문

Enhanced Mechanical and Thermal Properties of Polyimide Films Using Hydrophobic Fumed Silica Fillers.
Document Type
Article
Source
Polymers (20734360). Jan2024, Vol. 16 Issue 2, p297. 17p.
Subject
*POLYIMIDE films
*THERMAL properties
*SILICA fume
*GLASS transition temperature
*SCANNING electron microscopes
*SILICA
Language
ISSN
2073-4360
Abstract
Polyimide (PI) composite films with enhanced mechanical properties were prepared by incorporating modified fumed silica (FS) particles while preserving their optical and thermal characteristics. The PI matrix was synthesized using a fluorinated diamine, a fluorinated dianhydride, and a rigid biphenyl dianhydride via chemical imidization. Commercially available FS particles, including unmodified FS particles (0-FS) and particles modified with dimethyl (2-FS), trimethyl (3-FS), octyl (8-FS), octamethylcyclotetrasiloxane (D4-FS), and polydimethylsiloxane (PDMS-FS) were used. Scanning electron microscope images and nitrogen adsorption–desorption isotherms revealed well-defined porous structures in the FS particles. The water contact angles on the composite films increased compared to those of the pristine PI films, indicating improved water resistance. The PI/0-FS films exhibited a typical trade-off relationship between tensile modulus and elongation at break, as observed in conventional composites. Owing to the poor compatibility and agglomeration of the PDMS-FS particles, the PI/PDMS-FS composite films exhibited poor mechanical performance and diminished optical characteristics. Although the longer-chained FS particles (8- and D4-FS) improved the tensile modulus of the PI film by up to 12%, a reduction of more than 20% in toughness was observed. The PI composite films containing the methylated FS particles (2- and 3-FS) outperformed 8- and D4-FS in terms of mechanical properties, with PI/3-FS films showing an over 10% increased tensile modulus (from 4.07 to 4.42 GPa) and 15% improved toughness (from 6.97 to 8.04 MJ/m3) at 7 wt. % silica loading. Except for the PI/PDMS-FS composites, all composite film samples exhibited more than 86% transmittance at 550 nm. Regarding thermal properties, the glass transition temperature (Tg) and thermal stability remained stable for most composite films. In addition, PI/3-FS films demonstrated enhanced dimensional stability with lower coefficients of thermal expansion (from 47.3 to 34.5 ppm/°C). Overall, this study highlights the potential of incorporating specific modified FS particles to tailor the mechanical, optical, and thermal properties of PI composite films. [ABSTRACT FROM AUTHOR]