학술논문

Asian droughts in the last millennium: a search for robust impacts of Pacific Ocean surface temperature variabilities.
Document Type
Article
Source
Climate Dynamics. Jun2018, Vol. 50 Issue 11/12, p4671-4689. 19p.
Subject
*CLIMATE change
*OSCILLATIONS
*DROUGHTS
EL Nino
Language
ISSN
0930-7575
Abstract
This study investigates the robustness of hydroclimate impacts in Asia due to major drivers of climate variability in the Pacific Ocean, namely the El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). Composite analyses are carried out on a tree ring-based Palmer Drought Severity Index as well as on a long coupled global climate model control experiment. El Niño (La Niña) has a robust impact on wet (dry) conditions in West Asia and dry (wet) conditions in South Asia. For the PDO, impacts are found throughout the Asia domain. However, identifying the robust signals due to PDO from these analyses is more challenging due to the limited lengths of the data. Results indicate that West Asia (South and Southeast Asia) experiences wet (dry) conditions during periods of positive PDO. For East Asia, there is indication that positive (negative) PDO is associated with wet (dry) conditions around and southward of 30°N and dry (wet) conditions north of this latitude. This result is consistent with the current understanding of the role of PDO in the “southern-flood northern-drought” phenomenon in China. We suggest that specific extreme events or periods have regional impacts with strong intensities that cannot be fully explained through the composite analysis of ENSO, PDO, or any combination thereof. Two such examples are shown to illustrate this: the Strange Parallel Drought (1756-1768 CE) and the Great Drought (1876-1878 CE). Additionally, during these climate events, ENSO and PDO can be in phases which are not consistent with the required phases of these drivers that explain the concurrent drought and pluvial conditions in Asia. Therefore, not all historical drought and pluvial events in Northeast Asia and northern China can be related back to ENSO or PDO. Finally, we also examine the dynamical characteristics of the reported hydroclimatic impacts in the global climate model experiment. There is moisture transport into (out of) regions that exhibit wet (dry) conditions in a manner consistent with the various ENSO and PDO composites, thereby providing physical explanation of the index-based results. [ABSTRACT FROM AUTHOR]