학술논문

Fine-wire recordings of flexor hallucis brevis motor units up to maximal voluntary contraction reveal a flexible, nonrigid mechanism for force control.
Document Type
Article
Source
Journal of Neurophysiology. May2020, Vol. 123 Issue 5, p1766-1774. 9p.
Subject
*MOTOR unit
*MUSCLES
Language
ISSN
0022-3077
Abstract
Our current knowledge on the neurophysiological properties of intrinsic foot muscles is limited, especially at high forces. This study therefore aimed to investigate the discharge characteristics of single motor units in an intrinsic foot muscle, namely flexor hallucis brevis, during voluntary contractions up to 100% of maximal voluntary contraction. We measured the recruitment threshold and discharge rate of flexor hallucis brevis motor units using indwelling fine-wire electrodes. Ten participants followed a target ramp up to maximal voluntary contraction by applying a metatarso-phalangeal flexion torque. We observed motor unit recruitment thresholds across a wide range of isometric forces (ranging from 10 to 98% of maximal voluntary contraction) as well as across a wide range of discharge rates (ranging from 4.8 to 23.3 Hz for initial discharge rate and 9.5 to 34.2 Hz for peak discharge rate). We further observed patterns of high variability in recruitment threshold and discharge rate as well as crossover in discharge rate between motor units within the same participant. These findings suggest that the force output of a muscle is generated through a mechanism with substantial variability rather than relying on a rigid organization, which is in contrast to the proposed onion-skin theory. The demands placed on the plantar intrinsic foot muscles during high- and low-force tasks may explain these observed neurophysiological properties. [ABSTRACT FROM AUTHOR]