학술논문

Nitrogen‐sparging assisted anoxic biological drinking water treatment system.
Document Type
Article
Source
AWWA Water Science. Sep2023, Vol. 5 Issue 5, p1-14. 14p.
Subject
*NITROGEN in water
*DRINKING water
*DISSOLVED oxygen in water
*MICROORGANISMS
*POLYVINYL chloride
Language
ISSN
2577-8161
Abstract
Existing heterotrophic denitrification reactors rely on microorganisms to consume dissolved oxygen (DO) and create conditions suitable for denitrification, but this practice leads to excessive microbial growth and increased organic carbon doses. An innovative reactor that uses nitrogen gas sparging through a contactor to strip DO was developed and tested in the lab. It reduced influent nitrate from 15 to <1 mg/L as N with nitrite accumulation <1 mg/L as N. It maintained a consistent flow rate and developed minimal headloss, making it easier to operate than the denitrifying dual‐media filter that was operated in parallel. Gravel, polyvinyl chloride pieces, and no packing media were assessed as options for the nitrogen‐sparged contactor, and gravel was found to support denitrification at the highest loading rate and was resilient to nitrogen‐sparging shutoffs and intermittent operation. This innovative reactor appears promising for small drinking water systems. [ABSTRACT FROM AUTHOR]