학술논문

Interpreting Results from the NARCCAP and NA-CORDEX Ensembles in the Context of Uncertainty in Regional Climate Change Projections.
Document Type
Article
Source
Bulletin of the American Meteorological Society. Oct2018, Vol. 99 Issue 10, p2093-2106. 14p.
Subject
*CLIMATE change
*CLIMATOLOGY
*ATMOSPHERIC models
*GLOBAL warming
*WEATHER forecasting
*GREENHOUSE gases
Language
ISSN
0003-0007
Abstract
Two ensembles of dynamically downscaled climate simulations for North America—the North American Regional Climate Change Assessment Program (NARCCAP) and the Coordinated Regional Climate Downscaling Experiment (CORDEX) featuring simulations for North America (NA-CORDEX)—are analyzed to assess the impact of using a small set of global general circulation models (GCMs) and regional climate models (RCMs) on representing uncertainty in regional projections. Selecting GCMs for downscaling based on their equilibrium climate sensitivities is a reasonable strategy, but there are regions where the uncertainty is not fully captured. For instance, the six NA-CORDEX GCMs fail to span the full ranges produced by models in phase 5 of the Coupled Model Intercomparison Project (CMIP5) in summer temperature projections in the western and winter precipitation projections in the eastern United States. Similarly, the four NARCCAP GCMs are overall poor at spanning the full CMIP3 ranges in seasonal temperatures. For the Southeast, the NA-CORDEX GCMs capture the uncertainty in summer but not in winter projections, highlighting one consequence of downscaling a subset of GCMs. Ranges produced by the RCMs are often wider than their driving GCMs but are sensitive to the experimental design. For example, the downscaled projections of summer precipitation are of opposite polarity in two RCM ensembles in some regions. Additionally, the ability of the RCMs to simulate observed temperature trends is affected by the internal variability characteristics of both the RCMs and driving GCMs, and is not systematically related to their historical performance. This has implications for adequately sampling the impact of internal variability on regional trends and for using model performance to identify credible projections. These findings suggest that a multimodel perspective on uncertainties in regional projections is integral to the interpretation of RCM results. [ABSTRACT FROM AUTHOR]