학술논문

Functional annotation of the animal genomes: An integrated annotation resource for the horse.
Document Type
Article
Source
PLoS Genetics. 3/2/2023, Vol. 18 Issue 3, p1-24. 24p.
Subject
*GENETIC regulation
*HORSES
*ANNOTATIONS
*THOROUGHBRED horse
*GENE expression
*ANIMAL populations
*HORSE breeds
Language
ISSN
1553-7390
Abstract
The genomic sequence of the horse has been available since 2009, providing critical resources for discovering important genomic variants regarding both animal health and population structures. However, to fully understand the functional implications of these variants, detailed annotation of the horse genome is required. Due to the limited availability of functional data for the equine genome, as well as the technical limitations of short-read RNA-seq, existing annotation of the equine genome contains limited information about important aspects of gene regulation, such as alternate isoforms and regulatory elements, which are either not transcribed or transcribed at a very low level. To solve above problems, the Functional Annotation of the Animal Genomes (FAANG) project proposed a systemic approach to tissue collection, phenotyping, and data generation, adopting the blueprint laid out by the Encyclopedia of DNA Elements (ENCODE) project. Here we detail the first comprehensive overview of gene expression and regulation in the horse, presenting 39,625 novel transcripts, 84,613 candidate cis-regulatory elements (CRE) and their target genes, 332,115 open chromatin regions genome wide across a diverse set of tissues. We showed substantial concordance between chromatin accessibility, chromatin states in different genic features and gene expression. This comprehensive and expanded set of genomics resources will provide the equine research community ample opportunities for studies of complex traits in the horse. Author summary: Functional annotation of a reference genome provides critical information that pertains the tissue-specific gene expression and regulation. Non-model organisms often rely on existing annotations of human and mouse genomes and the conservation between species for their genome annotation. This approach has limited power in annotating transcripts and regulatory elements that are less evolutionarily conserved. Such are the cases of alternatively spliced isoforms and enhancer elements. In a large-scale collaborated effort, Functional Annotation of Animal Genome (FAANG) aims to generate species-specific and tissue-aware functional annotation for farm animals. In this study, we present the overall annotation efforts and findings from the equine FAANG group. This integrated annotation for the horse genome provides, for the first time, a comprehensive overview of gene expression and regulation landscape in nine major equine tissues, as well as an analytical framework for further inclusion of other important tissues. [ABSTRACT FROM AUTHOR]