학술논문

Simultaneous glucose and xylose utilization by an Escherichia coli catabolite repression mutant.
Document Type
Article
Source
Applied & Environmental Microbiology. Feb2024, Vol. 90 Issue 2, p1-14. 14p.
Subject
*CATABOLITE repression
*ESCHERICHIA coli
*CYCLIC adenylic acid
*XYLOSE
*NUCLEOTIDE synthesis
*LIGNOCELLULOSE
Language
ISSN
0099-2240
Abstract
As advances are made toward the industrial feasibility of mass-producing biofuels and commodity chemicals with sugar-fermenting microbes, high feedstock costs continue to inhibit commercial application. Hydrolyzed lignocellulosic biomass represents an ideal feedstock for these purposes as it is cheap and prevalent. However, many microbes, including Escherichia coli, struggle to efficiently utilize this mixture of hexose and pentose sugars due to the regulation of the carbon catabolite repression (CCR) system. CCR causes a sequential utilization of sugars, rather than simultaneous utilization, resulting in reduced carbon yield and complex process implications in fed-batch fermentation. A mutant of the gene encoding the cyclic AMP receptor protein, crp*, has been shown to disable CCR and improve the co-utilization of mixed sugar substrates. Here, we present the strain construction and characterization of a site-specific crp* chromosomal mutant in E. coli BL21 star (DE3). The crp* mutant strain demonstrates simultaneous consumption of glucose and xylose, suggesting a deregulated CCR system. The proteomics further showed that glucose was routed to the C5 carbon utilization pathways to support both de novo nucleotide synthesis and energy production in the crp* mutant strain. Metabolite analyses further show that overflow metabolism contributes to the slower growth in the crp* mutant. This highly characterized strain can be particularly beneficial for chemical production by simultaneously utilizing both C5 and C6 substrates from lignocellulosic biomass. [ABSTRACT FROM AUTHOR]