학술논문

Analysis of hybrid nanoparticles shape factor and thermal radiation effect on solidification in latent energy storage in a triplex chamber.
Document Type
Article
Source
Pramana: Journal of Physics. Jun2024, Vol. 98 Issue 2, p1-16. 16p.
Subject
Language
ISSN
0304-4289
Abstract
Researchers have made many efforts to store energy in forms that can be turned into required forms. Energy storage minimises the gap between supply and demand for energy while increasing energy systems’ effectiveness and dependability. Latent heat storage (LHS) can be used to store energy efficiently. This article explores the numerical analysis of the solidification procedure for latent heat thermal energy storage (LHTES) in a triplex chamber. TiO 2 –Al 2 O 3 nanoparticles were used as hybrid nanoparticles and water was used as a phase change material (PCM). FlexPDE, a general-purpose scripted finite-element software, was used to discretise and solve the partial differential governing equations. The study investigated the impact of various factors on the contour of solid fraction, temperature distribution, average temperature, solid fraction diagram and the overall energy of the system. These factors encompassed the volume fraction of nanoparticles, the presence of fins, thermal radiation and the shape factor of nanoparticles. Moreover, the optimal values for the full solidification time (FST) were established using the response surface methodology (RSM). The findings indicate that full solidification time is optimised when the hybrid nanoparticle volume fraction is 0.048, thermal radiation is 0.777 and shape factor is 15.29. [ABSTRACT FROM AUTHOR]