학술논문

Biochemical characterization of four splice variants of mouse Ca2+/calmodulin-dependent protein kinase Iδ.
Document Type
Article
Source
Journal of Biochemistry. Apr2021, Vol. 169 Issue 4, p445-458. 14p.
Subject
*PROTEIN kinases
*CYCLIC-AMP-dependent protein kinase
*CALMODULIN
*MYELIN basic protein
*SITE-specific mutagenesis
*AUTOPHOSPHORYLATION
Language
ISSN
0021-924X
Abstract
Ca2+/calmodulin (CaM)-dependent protein kinase Iδ (CaMKIδ) is a Ser/Thr kinase that plays pivotal roles in Ca2+ signalling. CaMKIδ is activated by Ca2+/CaM-binding and phosphorylation at Thr180 by CaMK kinase (CaMKK). In this study, we characterized four splice variants of mouse CaMKIδ (mCaMKIδs: a, b, c and d) found by in silico analysis. Recombinant mCaMKIδs expressed in Escherichia coli were phosphorylated by CaMKK; however, only mCaMKIδ-a and c showed protein kinase activities towards myelin basic protein in vitro , with mCaMKIδ-b and mCaMKIδ-d being inactive. Although mCaMKIδ-a and mCaMKIδ-c underwent autophosphorylation in vitro , only mCaMKIδ-c underwent autophosphorylation in 293T cells. Site-directed mutagenesis showed that the autophosphorylation site is Ser349, which is found in the C-terminal region of only variants c and b (Ser324). Furthermore, phosphorylation of these sites (Ser324 and Ser349) in mCaMKIδ-b and c was more efficiently catalyzed by cAMP-dependent protein kinase in vitro and in cellulo as compared to the autophosphorylation of mCaMKIδ-c. Thus, variants of mCaMKIδ possess distinct properties in terms of kinase activities, autophosphorylation and phosphorylation by another kinase, suggesting that they play physiologically different roles in murine cells. [ABSTRACT FROM AUTHOR]