학술논문

Antimicrobial Resistance Surveillance Methods in Bangladesh: Present and Way Forward.
Document Type
Article
Source
Clinical Infectious Diseases. 2023 Supplement, Vol. 77, pS549-S559. 11p.
Subject
*PUBLIC health surveillance
*COMMUNICABLE diseases
*RETROSPECTIVE studies
*INFECTION control
*RESEARCH funding
*DESCRIPTIVE statistics
*DRUG resistance in microorganisms
*BACTERIAL diseases
*MICROBIAL sensitivity tests
Language
ISSN
1058-4838
Abstract
The Institute of Epidemiology, Disease Control and Research (IEDCR) conducts active, case-based national antimicrobial resistance (AMR) surveillance in Bangladesh. The Capturing Data on Antimicrobial Resistance Patterns and Trends in Use in Regions of Asia (CAPTURA) project accessed aggregated retrospective data from non-IEDCR study sites and 9 IEDCR sites to understand the pattern and extent of AMR and to use analyzed data to guide ongoing and future national AMR surveillance in both public and private laboratories. Record-keeping practices, data completeness, quality control, and antimicrobial susceptibility test practices were investigated in all laboratories participating in case-based IEDCR surveillance and laboratory-based CAPTURA sites. All 9 IEDCR laboratories recorded detailed case-based data (n = 16 816) in electronic format for a priority subset of processed laboratory samples. In contrast, most CAPTURA sites (n = 18/33 [54.5%]) used handwritten registers to store data. The CAPTURA sites were characterized by fewer recorded variables (such as patient demographics, clinical history, and laboratory findings) with 1 020 197 individual data, less integration of patient records with the laboratory information system, and nonuniform practice of data recording; however, data were collected from all available clinical samples. The analyses conducted on AMR data collected by IEDCR and CAPTURA in Bangladesh provide current data collection status and highlight opportunities to improve ongoing data collection to strengthen current AMR surveillance system initiatives. We recommend a tailored approach to conduct AMR surveillance in high-burden, resource-limited settings. [ABSTRACT FROM AUTHOR]