학술논문

Characterization of the Zebrafish Elastin a (elna sa12235) Mutant: A New Model of Elastinopathy Leading to Heart Valve Defects.
Document Type
Article
Source
Cells (2073-4409). May2023, Vol. 12 Issue 10, p1436. 17p.
Subject
*BRACHYDANIO
*HEART abnormalities
*ELASTIN
*CUTIS laxa
*WILLIAMS syndrome
*CARDIOVASCULAR system
*HEART valves
Language
ISSN
2073-4409
Abstract
Elastic fibers are extracellular macromolecules that provide resilience and elastic recoil to elastic tissues and organs in vertebrates. They are composed of an elastin core surrounded by a mantle of fibrillin-rich microfibrils and are essentially produced during a relatively short period around birth in mammals. Thus, elastic fibers have to resist many physical, chemical, and enzymatic constraints occurring throughout their lives, and their high stability can be attributed to the elastin protein. Various pathologies, called elastinopathies, are linked to an elastin deficiency, such as non-syndromic supravalvular aortic stenosis (SVAS), Williams–Beuren syndrome (WBS), and autosomal dominant cutis laxa (ADCL). To understand these diseases, as well as the aging process related to elastic fiber degradation, and to test potential therapeutic molecules in order to compensate for elastin impairments, different animal models have been proposed. Considering the many advantages of using zebrafish, we here characterize a zebrafish mutant for the elastin a paralog (elnasa12235) with a specific focus on the cardiovascular system and highlight premature heart valve defects at the adult stage. [ABSTRACT FROM AUTHOR]