학술논문

Manipulation of microbiota reveals altered callosal myelination and white matter plasticity in a model of Huntington disease.
Document Type
Article
Source
Neurobiology of Disease. Jul2019, Vol. 127, p65-75. 11p.
Subject
*HUNTINGTON disease
*MYELINATION
*CORPUS callosum
*GUT microbiome
*COST of living
Language
ISSN
0969-9961
Abstract
Structural and molecular myelination deficits represent early pathological features of Huntington disease (HD). Recent evidence from germ-free (GF) animals suggests a role for microbiota-gut-brain bidirectional communication in the regulation of myelination. In this study, we aimed to investigate the impact of microbiota on myelin plasticity and oligodendroglial population dynamics in the mixed-sex BACHD mouse model of HD. Ultrastructural analysis of myelin in the corpus callosum revealed alterations of myelin thickness in BACHD GF compared to specific-pathogen free (SPF) mice, whereas no differences were observed between wild-type (WT) groups. In contrast, myelin compaction was altered in all groups when compared to WT SPF animals. Levels of myelin-related proteins were generally reduced, and the number of mature oligodendrocytes was decreased in the prefrontal cortex under GF compared to SPF conditions, regardless of genotype. Minor differences in commensal bacteria at the family and genera levels were found in the gut microbiota of BACHD and WT animals housed in standard living conditions. Our findings indicate complex effects of a germ-free status on myelin-related characteristics, and highlight the adaptive properties of myelination as a result of environmental manipulation. • Altering gut microbiota (germ-free conditions) leads to differential effects on myelin characteristics in HD and control mice. • Germ-free conditions are associated with altered callosal myelin thickness and decompaction. • Composition of commensal gut bacteria is largely similar between HD and control mice. [ABSTRACT FROM AUTHOR]