학술논문

Response to Sodium Channel blocking Antiseizure medications and coding polymorphisms of Sodium Channel genes in Taiwanese epilepsy patients.
Document Type
Journal Article
Source
BMC Neurology. 9/23/2021, Vol. 21 Issue 1, p1-13. 13p.
Subject
*SODIUM channels
*PEOPLE with epilepsy
*SINGLE nucleotide polymorphisms
*TAIWANESE people
*VALPROIC acid
Language
ISSN
1471-2377
Abstract
Background: Many antiseizure medications (ASMs) control seizures by blocking voltage-dependent sodium channels. Polymorphisms of sodium channel genes may affect the response to ASMs due to altering the effect of ASMs on blocking sodium channels.Methods: We conducted a retrospective study of epilepsy patients followed up at the Neurological Department of Kaohsiung Chang Gung Memorial Hospital, Taiwan between January 2010 and December 2018. We categorized the patients into response, partial response, and failure to sodium channel blocking ASM groups. Sodium channel blocking ASMs included phenytoin, carbamazepine, lamotrigine, oxcarbazepine, lacosamide, zonisamide, topiramate, and valproic acid. A subgroup of predominant sodium channel blocking ASMs included phenytoin, carbamazepine, lamotrigine, oxcarbazepine, and lacosamide. Associations between the response of ASMs and single-nucleotide polymorphisms of SCN1A, SCN1B, SCN2A, and SCN9A were analyzed.Results: Two hundred Taiwanese patients and 21 single-nucleotide polymorphisms among SCN1A, SCN1B, SCN2A, and SCN9A were evaluated. We found allele C of rs55742440 in SCN1B was statistically significantly associated with not achieving seizure-free with sodium channel blocking ASMs. For the predominant sodium channel blocking ASMs group, no SNPs were associated with the response of ASMs.Conclusion: Single-nucleotide polymorphism in SCN1B was associated with the response to sodium channel blocking ASMs. This highlights the possibility that beta subunits may affect the function of sodium channels and resulted in different responsiveness to ASMs. [ABSTRACT FROM AUTHOR]