학술논문

Pristine survey – XIV. Chemical analysis of two ultra-metal-poor stars.
Document Type
Article
Source
Monthly Notices of the Royal Astronomical Society. Dec2021, Vol. 508 Issue 2, p3068-3083. 16p.
Subject
*ALKALINE earth metals
*LOCAL thermodynamic equilibrium
*ANALYTICAL chemistry
*GALACTIC evolution
Language
ISSN
0035-8711
Abstract
Elemental abundances of the most metal-poor stars reflect the conditions in the early Galaxy and the properties of the first stars. We present a spectroscopic follow-up of two ultra-metal-poor stars ([Fe/H] < −4.0) identified by the survey Pristine : Pristine 221.8781+9.7844 and Pristine 237.8588+12.5660 (hereafter Pr 221 and Pr 237, respectively). Combining data with earlier observations, we find a radial velocity of −149.25 ± 0.27 and −3.18 ± 0.19 km s−1 for Pr 221  and Pr 237, respectively, with no evidence of variability between 2018 and 2020. From a one-dimensional (1D) local thermodynamic equilibrium (LTE) analysis, we measure [Fe/H]LTE = −4.79 ± 0.14 for Pr 221 and −4.22 ± 0.12 for Pr 237, in good agreement with previous studies. Abundances of Li, Na, Mg, Al, Si, Ca, Ti, Fe, and Sr were derived based on the non-LTE (NLTE) line formation calculations. When NLTE effects are included, we measure slightly higher metallicities: [Fe/H]NLTE = −4.40 ± 0.13 and −3.93 ± 0.12, for Pr 221 and Pr 237, respectively. Analysis of the G band yields [C/Fe]1D-LTE ≤ +2.3 and [C/Fe]1D-LTE ≤ +2.0 for Pr 221 and Pr 237. Both stars belong to the low-carbon band. Upper limits on nitrogen abundances are also derived. Abundances for other elements exhibit good agreement with those of stars with similar parameters. Finally, to get insight into the properties of their progenitors, we compare NLTE abundances to theoretical yields of zero-metallicity supernovae (SNe). This suggests that the SNe progenitors had masses ranging from 10.6 to 14.4 M⊙ and low-energy explosions with (0.3–1.2) × 1051 erg. [ABSTRACT FROM AUTHOR]