학술논문

Neuroprotectant minocycline depresses glutamatergic neurotransmission and Ca2+ signalling in hippocampal neurons.
Document Type
Article
Source
European Journal of Neuroscience. Nov2007, Vol. 26 Issue 9, p2481-2495. 15p. 11 Graphs.
Subject
*NEURAL transmission
*TETRACYCLINE
*HIPPOCAMPUS (Brain)
*CEREBRAL cortex
*AMINO acids
*NERVOUS system
Language
ISSN
0953-816X
Abstract
The mechanism of the neuroprotective action of the tetracycline antibiotic minocycline against various neuron insults is controversial. In an attempt to clarify this mechanism, we have studied here its effects on various electrophysiological parameters, Ca2+ signalling, and glutamate release, in primary cultures of rat hippocampal neurons, and in synaptosomes. Spontaneous excitatory postsynaptic currents and action potential firing were drastically decreased by minocycline at concentrations known to afford neuroprotection. The drug also blocked whole-cell inward Na+ currents ( INa) by 20%, and the whole-cell Ca2+ current ( ICa) by about 30%. Minocycline inhibited glutamate-evoked elevation of the cytosolic Ca2+ concentration ([Ca2+]c) by nearly 40%, and K+-evoked glutamate release from synaptosomes by 63%. Minocycline also depressed the frequency and amplitude of spontaneous excitatory postsynaptic currents, but did not affect the whole-cell inward current elicited by γ-aminobutyric acid or glutamate. This pharmacological profile suggests that the neuroprotective effects of minocycline might be associated with the mitigation of neuronal excitability, glutamate release, and Ca2+ overloading. [ABSTRACT FROM AUTHOR]