학술논문

Germline Mutations in Mtap Cooperate with Myc to Accelerate Tumorigenesis in Mice.
Document Type
Article
Source
PLoS ONE. Jun2013, Vol. 8 Issue 6, p1-9. 9p.
Subject
*GERM cells
*GENETIC mutation
*NEOPLASTIC cell transformation
*LABORATORY mice
*GENE expression
*METHYLTHIOADENOSINE
*PHOSPHORYLASES
*LYMPHOMAS
Language
ISSN
1932-6203
Abstract
Objective: The gene encoding the methionine salvage pathway methylthioadenosine phosphorylase (MTAP) is a tumor suppressor gene that is frequently inactivated in a wide variety of human cancers. In this study, we have examined if heterozygosity for a null mutation in Mtap (MtaplacZ) could accelerate tumorigenesis development in two different mouse cancer models, Eμ-myc transgenic and Pten+/−. Methods: Mtap Eμ-myc and Mtap Pten mice were generated and tumor-free survival was monitored over time. Tumors were also examined for a variety of histological and protein markers. In addition, microarray analysis was performed on the livers of MtaplacZ/+ and Mtap+/+ mice. Results: Survival in both models was significantly decreased in MtaplacZ/+ compared to Mtap+/+ mice. In Eµ-myc mice, Mtap mutations accelerated the formation of lymphomas from cells in the early pre-B stage, and these tumors tended to be of higher grade and have higher expression levels of ornithine decarboxylase compared to those observed in control Eµ-myc Mtap+/+ mice. Surprisingly, examination of Mtap status in lymphomas in Eµ-myc MtaplacZ/+ and Eµ-myc Mtap+/+ animals did not reveal significant differences in the frequency of loss of Mtap protein expression, despite having shorter latency times, suggesting that haploinsufficiency of Mtap may be playing a direct role in accelerating tumorigenesis. Consistent with this idea, microarray analysis on liver tissue from age and sex matched Mtap+/+ and MtaplacZ/+ animals found 363 transcripts whose expression changed at least 1.5-fold (P<0.01). Functional categorization of these genes reveals enrichments in several pathways involved in growth control and cancer. Conclusion: Our findings show that germline inactivation of a single Mtap allele alters gene expression and enhances lymphomagenesis in Eµ-myc mice. [ABSTRACT FROM AUTHOR]