학술논문

NLRP3 Inflammasome as a Potentially New Therapeutic Target of Mesenchymal Stem Cells and Their Exosomes in the Treatment of Inflammatory Eye Diseases.
Document Type
Article
Source
Cells (2073-4409). Sep2023, Vol. 12 Issue 18, p2327. 15p.
Subject
*STEM cell treatment
*EYE diseases
*NLRP3 protein
*INFLAMMASOMES
*APOPTOSIS
*PROGRAMMED cell death 1 receptors
*MESENCHYMAL stem cells
*EXOSOMES
Language
ISSN
2073-4409
Abstract
Due to their potent immunoregulatory and angio-modulatory properties, mesenchymal stem cells (MSCs) and their exosomes (MSC-Exos) have emerged as potential game-changers in regenerative ophthalmology, particularly for the personalized treatment of inflammatory diseases. MSCs suppress detrimental immune responses in the eyes and alleviate ongoing inflammation in ocular tissues by modulating the phenotype and function of all immune cells that play pathogenic roles in the development and progression of inflammatory eye diseases. MSC-Exos, due to their nano-sized dimension and lipid envelope, easily bypass all barriers in the eyes and deliver MSC-sourced bioactive compounds directly to target cells. Although MSCs and their exosomes offer a novel approach to treating immune cell-driven eye diseases, further research is needed to optimize their therapeutic efficacy. A significant number of experimental studies is currently focused on the delineation of intracellular targets, which crucially contribute to the immunosuppressive and anti-inflammatory effects of MSCs and MSC-Exos. The activation of NLRP3 inflammasome induces programmed cell death of epithelial cells, induces the generation of inflammatory phenotypes in eye-infiltrated immune cells, and enhances the expression of adhesion molecules on ECs facilitating the recruitment of circulating leukocytes in injured and inflamed eyes. In this review article, we summarize current knowledge about signaling pathways that are responsible for NLRP3 inflammasome-driven intraocular inflammation and we emphasize molecular mechanisms that regulate MSC-based modulation of NLRP3-driven signaling in eye-infiltrated immune cells, providing evidence that NLRP3 inflammasome should be considered a potentially new therapeutic target for MSCs and MSC-Exo-based treatment of inflammatory eye diseases. [ABSTRACT FROM AUTHOR]