학술논문

A novel polymer enabled by polymerized small molecule strategy for tumor photothermal and photodynamic therapy.
Document Type
Article
Source
Journal of Nanobiotechnology. 12/20/2023, Vol. 21 Issue 1, p1-16. 16p.
Subject
Language
ISSN
1477-3155
Abstract
Photothermal therapy (PTT) and photodynamic therapy (PDT) are effective method for tumor treatment. However, the limited variety and quantity of photothermal agents (PTAs) and photosensitizer (PSs) are still major challenges. Moreover, the cell apoptosis mechanism induced by PDT and PTT is still elusive. A fused-ring small molecule acceptor–donor acceptor′ donor–acceptor (A-DA′D-A) type of Y5 (Scheme 1) has a narrow band-gap and strong light absorption. Herein, we used Y5 to polymerize with thiophene unit to obtain polymer PYT based on polymerized small molecule strategy, and PYT nanoparticles (PYT NPs) was prepared via one-step nanoprecipitation strategy with DSPE-PEG2000. PYT NPs had excellent biocompatibility, good photostability, high photothermal conversion efficiency (67%) and reactive oxygen species (ROS) production capacity under 808 nm laser irradiation (PYT NPs + NIR). In vitro and in vivo experiments revealed that PYT NPs + NIR had the ability to completely ablate tumor cells. It was demonstrated that cell apoptosis induced by PYT NPs + NIR was closely related to mitochondrial damage. This study provides valuable guidance for constructing high-performance organic PTAs and PSs for tumor treatment.Highlights: Y5 molecule was polymerized with thiophene unit to synthesize PYT by polymerized small molecule strategy. PYT nanoparticles (PYT NPs) was prepared via one-step nanoprecipitation strategy with DSPE-PEG2000. PYT NPs had excellent performance of photothermal therapy, photodynamic therapy and fluorescence imaging for tumor. Polymerized small molecule strategy is feasible to increase the variety and quantity of PTAs and PSs for the design of anti-tumor drugs. [ABSTRACT FROM AUTHOR]