학술논문

Cytoprotective Effect of the Elongation Factor-2 Kinase-Mediated Autophagy in Breast Cancer Cells Subjected to Growth Factor Inhibitio.
Document Type
Article
Source
PLoS ONE. 2010, Vol. 5 Issue 3, p1-8. 8p.
Subject
*AUTOPHAGY
*ORGANELLES
*GROWTH factors
*CELL growth
*EUKARYOTIC cells
*CANCER cells
*BREAST cancer
*PROTEIN synthesis
*TRASTUZUMAB
Language
ISSN
1932-6203
Abstract
Background: Autophagy is a highly conserved and regulated cellular process employed by living cells to degrade proteins and organelles as a response to metabolic stress. We have previously reported that eukaryotic elongation factor-2 kinase (eEF-2 kinase, also known as Ca2+/calmodulin-dependent protein kinase III) can positively modulate autophagy and negatively regulate protein synthesis. The purpose of the current study was to determine the role of the eEF-2 kinaseregulated autophagy in the response of breast cancer cells to inhibitors of growth factor signaling. Methodology/Principal Findings: We found that nutrient depletion or growth factor inhibitors activated autophagy in human breast cancer cells, and the increased activity of autophagy was associated with a decrease in cellular ATP and an increase in activities of AMP kinase and eEF-2 kinase. Silencing of eEF-2 kinase relieved the inhibition of protein synthesis, led to a greater reduction of cellular ATP, and blunted autophagic response. We further showed that suppression of eEF-2 kinase-regulated autophagy impeded cell growth in serum/nutrient-deprived cultures and handicapped cell survival, and enhanced the efficacy of the growth factor inhibitors such as trastuzumab, gefitinib, and lapatinib. Conclusion/Significance: The results of this study provide new evidence that activation of eEF-2 kinase-mediated autophagy plays a protective role for cancer cells under metabolic stress conditions, and that targeting autophagic survival may represent a novel approach to enhancing the effectiveness of growth factor inhibitors. [ABSTRACT FROM AUTHOR]