학술논문

Repressed SIRT1/PGC-1α pathway and mitochondrial disintegration in iPSC-derived RPE disease model of age-related macular degeneration.
Document Type
Journal Article
Source
Journal of Translational Medicine. 12/20/2016, Vol. 14, p1-17. 17p.
Subject
*MITOCHONDRIA formation
*MITOCHONDRIAL pathology
*RHODOPSIN
*HUMAN heredity
*ETIOLOGY of diseases
*THERAPEUTICS
*DISEASE risk factors
*REACTIVE oxygen species
*BIOLOGICAL models
*CELL differentiation
*CELLULAR signal transduction
*MITOCHONDRIA
*PHAGOCYTOSIS
*RETINAL degeneration
*SKIN
*STEM cells
*SUPEROXIDE dismutase
*TRANSFERASES
*PHENOTYPES
*OXIDATIVE stress
Language
ISSN
1479-5876
Abstract
Background: Study of age related macular degeneration (AMD) has been hampered by lack of human models that represent the complexity of the disease. Here we have developed a human in vitro disease model of AMD to investigate the underlying AMD disease mechanisms.Methods: Generation of iPSCs from retinal pigment epithelium (RPE) of AMD donors, age-matched normal donors, skin fibroblasts of a dry AMD patient, and differentiation of iPSCs into RPE (AMD RPE-iPSC-RPE, normal RPE-iPSC-RPE and AMD Skin-iPSC-RPE, respectively). Immunostaining, cell viability assay and reactive oxygen species (ROS) production under oxidative stress conditions, electron microscopy (EM) imaging, ATP production and glycogen concentration assays, quantitative real time PCR, western blot, karyotyping.Results: The AMD RPE-iPSC-RPE and AMD Skin-iPSC-RPE present functional impairment and exhibit distinct disease phenotypes compared to RPE-iPSC-RPE generated from normal donors (Normal RPE-iPSC-RPE). The AMD RPE-iPSC-RPE and AMD Skin-iPSC-RPE show increased susceptibility to oxidative stress and produced higher levels of reactive oxygen species (ROS) under stress in accordance with recent reports. The susceptibility to oxidative stress-induced cell death in AMD RPE-iPSC-RPE and Skin-iPSC-RPE was consistent with inability of the AMD RPE-iPSC-RPE and Skin-iPSC-RPE to increase SOD2 expression under oxidative stress. Phenotypic analysis revealed disintegrated mitochondria, accumulation of autophagosomes and lipid droplets in AMD RPE-iPSC-RPE and AMD Skin-iPSC-RPE. Mitochondrial activity was significantly lower in AMD RPE-iPSC-RPE and AMD Skin-iPSC-RPE compared to normal cells and glycogen concentration was significantly increased in the diseased cells. Furthermore, Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), a regulator of mitochondrial biogenesis and function was repressed, and lower expression levels of NAD-dependent deacetylase sirtuin1 (SIRT1) were found in AMD RPE-iPSC-RPE and AMD Skin-iPSC-RPE as compared to normal RPE-iPSC-RPE.Conclusions: Our studies suggest SIRT1/PGC-1α as underlying pathways contributing to AMD pathophysiology, and open new avenues for development of targeted drugs for treatment of this devastating neurodegenerative disease of the visual system. [ABSTRACT FROM AUTHOR]