학술논문

In vivo validation of a system for haptic feedback of tool vibrations in robotic surgery.
Document Type
Article
Source
Surgical Endoscopy & Other Interventional Techniques. Feb2013, Vol. 27 Issue 2, p656-664. 9p. 1 Diagram, 1 Chart, 3 Graphs.
Subject
*MEDICAL robotics
*ENDOSCOPIC surgery
*LAPAROSCOPIC surgery
*SURGEONS
*ACCELEROMETERS
*OPERATIVE surgery
Language
ISSN
1866-6817
Abstract
Background: Robotic minimally invasive surgery (RMIS) lacks the haptic (kinesthetic and tactile) cues that surgeons are accustomed to receiving in open and laparoscopic surgery. We previously introduced a method for adding tactile and audio feedback of tool vibrations to RMIS systems, creating sensations similar to what one feels and hears when using a laparoscopic tool. Our prior work showed that surgeons performing box-trainer tasks significantly preferred having this feedback and believed that it helped them concentrate on the task, but we did not know how well our approach would work in a clinically relevant setting. This study constituted the first in vivo test of our system. Methods: Accelerometers that measure tool vibrations were mounted to the patient-side manipulators of a da Vinci S surgical system. The measured vibrations were recorded and presented to the surgeon through vibrotactile and audio channels while two transperitoneal nephrectomies and two mid-ureteral dissections with uretero-ureterostomy were completed on a porcine model. We examined 30 minutes of resulting video to identify and tag manipulation events, aiming to determine whether our system can measure significant and meaningful tool vibrations during in vivo procedures. Results: A total of 1,404 manipulation events were identified. Analysis of each event's accelerations indicated that 82 % of these events resulted in significant vibrations. The magnitude of the accelerations measured for different manipulation events varied widely, with hard contact causing the largest cues. Conclusions: This study demonstrates the feasibility of providing tool vibration feedback during in vivo RMIS. Significant tool vibrations were reliably measured for the majority of events during standard urological procedures on a porcine model, while real-time, naturalistic tactile and audio tool vibration feedback was provided to the surgeon. The feedback system's modules were easily implemented outside the sterile field of the da Vinci S and did not interfere with the surgical procedure. [ABSTRACT FROM AUTHOR]

Online Access