학술논문

5-Hydroxymethylfurfural catalytic oxidation under mild conditions by Co (II), Fe (III) and Cu (II) Salen complexes supported on SBA-15: Synthesis, characterization and activity.
Document Type
Article
Source
Applied Catalysis A: General. Oct2017, Vol. 547, p132-145. 14p.
Subject
*COMPLEX compounds synthesis
*METAL complexes
*HYDROXYMETHYLFURFURAL
*CATALYTIC oxidation
*CARBON monoxide
*CATALYST supports
Language
ISSN
0926-860X
Abstract
In the present work, an alternative system of 5-hydroxymethylfurfural (HMF) oxidation was studied, in an effort to avoid the use of expensive precious metal catalysts, high pressures and systems not environmentally friendly. The catalysts tested were Co (II), Fe (II) and Cu (II) Salen complexes supported on SBA-15 (Co Salen/SBA-15, Fe Salen/SBA-15 and Cu Salen/SBA-15 respectively). The reaction was carried out in aqueous medium at room temperature (25 °C ± 1) and atmospheric pressure, using hydrogen peroxide (H 2 O 2 ) as the only oxidant agent. The effect of various reaction conditions such as H 2 O 2 content, oxidant agent amount, different transition metals present in the catalyst and temperature were evaluated. The HMF and the reaction products such as; 2,5-diformylfuran (DFF), 2,5-furandicarboxylic acid (FDCA), 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) and 5-formyl-2-furancarboxylic acid (FFCA) were followed by high performance liquid chromatography (HPLC) measurements. The selectivity and reaction kinetics under different reaction conditions was studied. The different synthesized catalysts were extensively characterized by UV–vis spectroscopy, subsequently by FTIR, DR-UV–vis, AA and XPS spectroscopy and through nitrogen physorption, which was related to its catalytic activity. The successful synthesis of SBA-15 support was confirmed by its textural properties and STEM. From the experimental data obtained a reaction mechanism with parallel reactions was proposed founding that the oxidation route of the alcohol group in HMF is favored over of the oxidation of the aldehyde group on the other side of the molecule. [ABSTRACT FROM AUTHOR]