학술논문

Long-term in vivo gene expression in mouse kidney using ϕC31 integrase and electroporation.
Document Type
Article
Source
Journal of Drug Targeting. Jun2015, Vol. 23 Issue 5, p427-435. 9p.
Subject
*GENE expression
*KIDNEY diseases
*GENE therapy
*CONGENITAL disorders
*ANIMAL disease models
*ELECTROPORATION
*ANTISENSE DNA
Language
ISSN
1061-186X
Abstract
Background: Achieving long-term gene expression in kidney will be beneficial for gene therapy of renal and congenital diseases, genetic studies constructing animal disease models, and the functional analysis of disease-related genes. Purpose: The purpose of this study was to develop an in vivo long-term gene expression system in murine kidney using ϕC31 integrase. Methods: Gene expression in cultured RENCA, TCMK-1, and HEK293 cells was assessed. The long-term in vivo gene expression system in the kidney was achieved by co-transfecting 5 µg of pORF-luc/attB as a donor plasmid and 20 µg of pCMV-luc as a helper plasmid into the right kidney of mice by electroporation. Luciferase expression levels were measured to determine longevity of the expression. Results: Significantly high luciferase expression levels were observed in cultured RENCA, TCMK-1, and HEK293 cells over 1 month compared with controls (non-integrase system). The luciferase cDNA sequence was integrated at a pseudo attP site termed mpsL1. In vivo luciferase expression levels in the integrase group were sustained and significantly higher than those in the control group over 2 months. Furthermore, ϕC31 integrase-transfected cells had less genomic DNA damage caused by integrase expression. Discussion and conclusion: These results demonstrated that the ϕC31 integrase system could produce long-term (2 months) in vivo gene expression in mouse kidney. [ABSTRACT FROM AUTHOR]