학술논문

A New Opportunity for "Old" Molecules: Targeting PARP1 Activity through a Non-Enzymatic Mechanism.
Document Type
Article
Source
International Journal of Molecular Sciences. May2023, Vol. 24 Issue 10, p8849. 15p.
Subject
*CELL cycle regulation
*POLY ADP ribose
*SMALL molecules
*MOLECULES
*POST-translational modification
*TRANSCRIPTION factors
Language
ISSN
1661-6596
Abstract
In recent years, new therapies have been developed based on molecules that target molecular mechanisms involved in both the initiation and maintenance of the oncogenic process. Among these molecules are the poly(ADP-ribose) polymerase 1 (PARP1) inhibitors. PARP1 has emerged as a target with great therapeutic potential for some tumor types, drawing attention to this enzyme and resulting in many small molecule inhibitors of its enzymatic activity. Therefore, many PARP inhibitors are currently in clinical trials for the treatment of homologous recombination (HR)-deficient tumors, BRCA-related cancers, taking advantage of synthetic lethality. In addition, several novel cellular functions unrelated to its role in DNA repair have been described, including post-translational modification of transcription factors, or acting through protein–protein interactions as a co-activator or co-repressor of transcription. Previously, we reported that this enzyme may play a key role as a transcriptional co-activator of an important component of cell cycle regulation, the transcription factor E2F1. Here, we show that PARP inhibitors, which interfere with its activity in cell cycle regulation, perform this without affecting its enzymatic function. [ABSTRACT FROM AUTHOR]