학술논문

Characterization of Matricellular Protein Expression Signatures in Mechanistically Diverse Mouse Models of Kidney Injury.
Document Type
Article
Source
Scientific Reports. 11/13/2019, Vol. 9 Issue 1, pN.PAG-N.PAG. 1p.
Subject
*PROTEIN expression
*FIBROSIS
*PATHOLOGICAL physiology
*KIDNEY diseases
*EXTRACELLULAR matrix
*FOLIC acid
*MICE physiology
Language
ISSN
2045-2322
Abstract
Fibrosis is the most common pathophysiological manifestation of Chronic Kidney Disease (CKD). It is defined as excessive deposition of extracellular matrix (ECM) proteins. Embedded within the ECM are a family of proteins called Matricellular Proteins (MCPs), which are typically expressed during chronic pathologies for ECM processing. As such, identifying potential MCPs in the pathological secretome of a damaged kidney could serve as diagnostic/therapeutic targets of fibrosis. Using published RNA-Seq data from two kidney injury mouse models of different etiologies, Folic Acid (FA) and Unilateral Ureteral Obstruction (UUO), we compared and contrasted the expression profile of various members from well-known MCP families during the Acute and Fibrotic injury phases. As a result, we identified common and distinct MCP expression signatures between both injury models. Bioinformatic analysis of their differentially expressed MCP genes revealed similar top annotation clusters from Molecular Function and Biological Process networks, which are those commonly involved in fibrosis. Using kidney lysates from FA- and UUO-injured mice, we selected MCP genes from our candidate list to confirm mRNA expression by Western Blot, which correlated with injury progression. Understanding the expressions of MCPs will provide important insight into the processes of kidney repair, and may validate MCPs as biomarkers and/or therapeutic targets of CKD. [ABSTRACT FROM AUTHOR]